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In approximating an arbitrary point ofR" from a fixed subspace, it is known that
the net of IP-best approximations, 1~p < 00, converges to the strict uniform best
approximation. It is shown that this convergence occurs at a rate no worse than
l/p. It is also shown by example that this rate may be achieved. © 1990 Academic

Press, Inc.

INTRODUCTION

For x = (Xl, ..., x n
) in Rn, the IP norms, 1~p ~ 00, are defined by

for 1~p < 00

and

Ilxll co = max Ixil·
l~i~n

If K is a convex subset of R n and z is in Rn\K, we say that xpE K,
1~p ~ 00, is a Best Approximation from K to z with respect to the norm
II· lip if

Jlxp- zllp = inf Ilx - zllp'
XEK

For 1 <p < 00, it is known that xp is unique. If, in addition, K is an affine
subspace of Rn, then the net {xp: 1<p< oo} converges to a vector sEK
as p -+ 00 [1]. Here, s is a distinguished lco-Best Approximation charac
terized by the following. Let X 00 = {x E K: Ilx - zll 00 = infyEK Ily - zll oo}.
For each x E X 00' let 't(x) be the vector whose components are given by
Ix i

- zij, i = 1, ..., n, arranged in nonincreasing order. The Strict Uniform
Approximation is the unique SEXco with r(s) minimal in the lexicographic
ordering on X co' Thus, an application of the P6lya Algorithm [9J (Le., the
calculation of limp ~ 00 xp ) would enable us to compute the "best" of the
lOO-Best Approximations.
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The need to estimate limp -> 00 xp naturally leads to questions regarding
the rate of convergence of xp to s. In [4] an extrapolation scheme is
proposed for estimating s from xp and it is shown that when the Uniform
Best Approximation from an affine subspace is strongly unique, the rate of
convergence of x p to s is at worst lip. Of course, if s is strongly unique,
then s is unique, so a Linear Programming technique could be used to
compute s. In the absence of uniqueness, Linear Programming may fail to
return the strict approximation. The purpose of the present note is to
obtain a convergence estimate without assuming that there is a unique best
uniform approximation. This rate estimate could then be used in
extrapolatory schemes in general discrete approximation problems. To
motivate our result and show that it is sharp, we begin by discussing the
following example;

EXAMPLE. Suppose that z = 0 and K = P, the hyperplane defined by

where each ai is positive. Let x p and s be as defined above and let
rp = xp - s. Then P may be represented by P = V +s, where V is a subspace
ofRn, rpE V, and rp-+O as p-+ 00. We claim that, for 1<p<00, xp is in
the first octant of Rn. Indeed, if x~ < 0, for some j, let y = (lx;l, ..., Ix;I).
Then IIYllp= Ilxpllp but L:7= 1 a i / > 1, which implies that P intersects the
open ball {x: II x II p< II y II p}, a contradiction. When x is in P and in the first
octant,

For 2~ i ~ n, the partial derivative with respect to Xi of II· lip vanishes at
xp , I.e.,

(2)

so

(3 )

By (2), for 2 ~j ~ n,
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x j = (a./a.)1/(p-1) Xi
p J 1 p'

Plugging these values of x~, 2,,;;j,,;; n, into (3), we obtain

(

n )-1
x~ = (aY/(P-1) .L (aj )p/(P-1) ,

J=1
(4)

If we write (1) as

Ilxll~ = (x1)P + ... + (xn
-

1)P + (a,;1(1- ~t>iXi)r
a similar calculation shows that (4) also holds for i = 1.

By (4), limp~oo xp=x oo , where

(

n )-1
x!x, = .2: ai ,

1=1

(5)

By [lJ, X oo =s, the strict uniform Best Approximation to O. We will now
investigate the behavior of p I'~I = p Ix~ - sil as p --+ 00. We assume without
loss of generality that i = 1. By (4) and (5),

p[(a )1/(p-l)"n a _"n (a)p/(p-l)]
,1- 1 L..J=1 J '::""J=1 J

P p- [2:;=1 (aj)p/(P-1)][2:;~1 aJ

Since 2: (aj )p/(p-1) --+ 2: aj' we need only consider the numerator, which we
call cp(p), of the last fraction. Dividing the top and bottom of cp(p) by p
and applying L'Hopital's rule, we have limp _ 00 cp(p) = limp _ 00 tjJ(p) .
limp _ 00 1J(p), where tjJ(p) = pZI(p -1)z and

n n

1J(p) = (a 1)1/(P- 11Iog a l L aj - L (aJP/(p- 11Iogaj .
j= 1 j= 1

Clearly limp _ 00 tjJ(p) = 1 and

n

lim 1J(p) = L ailog a1-log aj).
p""""'" 00 j=2

(6)

Thus r; = O(l/p). If r~ = o(l/p) for each k, 1,,;; k,,;; n, then the kth version
of (6) vanishes for each k, which implies that 2:;=1a)ogaj=

log a12:;~ 1aj = ... = log an 2:;= 1aj SO a1=az= ... = an' Thus, in every
case except this trivial case (where r; = 0 for every k and every p), the
convergence of f p to 0 is not faster than that of lip.
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We now show that r~ = O(1/p) in the more general context where z = 0
and K = H, where H is any affine subspace of Rn

• Suppose {Pk} %"= J is an
unbounded increasing sequence in R. By [3], we may suppose without loss
of generality that the error vector, rPk = xpk - S, is nonzero for each k. Let
Uk =rpjllrpJ 00 and Ak= /lrpklloo. Since Iluklloo = 1 for each k, a subsequence
of {Uk} must converge to some U E V = H - s, with Ilull oo = 1. By relabeling,
we may assume that Uk ~ U. If we let Vk = Uk - u, then Vk ~ 0 as k ~ 00 and
X Pk = S + AkUk= S + Ak(U + Vk)' In our discussion of the rate of convergence
of rPk to 0, we will refer to several constants and subsets of {I, ... , n}. They
are defined as

a=max 1st
iE A

b=max lut
iEB

c=min luil.
iEe

b J = min lut
JED

Each of A, B, and C is nonempty, a, b > 0 and 0 < b J , C < 00. Indeed,
Ilull oo = 1, so A =f 0. Suppose a = O. For any 0: E R,

!lxPk + o:ull;: = lis + Ak(U +vk) +o:ull;:
n

= I jsi+Adui+vD+O:UijPk
i=J

= 2: Isi+Akvi-IPk+ 2: IAkvUPk
Si=FO SI=U1=O

+ I IAk(Ui+ vD + iXuil Pk.
si=O,#-ui

Observe that only the last sum depends on IX. Since Ilull oo = 1, the set
{i: Si = 0 =f u i

} is nonempty and, for large Pb sign(Apk(u i + v~)) = sign(u i
).

Thus, for 0: sufficiently small and negative, each term in the last sum is
reduced, contradicting the minimality of IlxPkIlPk. Thus a> O. Now it is clear
that B =f 0, b > 0, and 0 < b j < 00. If C = 0, then UiS i ~ 0 whenever Iii;;::: a,
1~ i ~ n, and uisi < 0 for some j E B. If i ¢ A, lsi + 8u i l = Isij. For i E Band
for sufficiently small b > 0, lSi + buil ~ a and lsi + Juil < a. Thus s + Ju
is a uniform best approximation which is less than s in the lexicographic
ordering, a contradiction. Thus C =f 0 and 0 < C < 00,

Because x p is the Best Approximation with respect to II· lip, the derivative
of IIxll;: in the direction u must vanish at xPk' i.e.,

n

I IX~kIPk-J sign(x~k)ui= I IX~kIPk-l sign(x~k)ui=O.
i= 1 iEA
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(8)

By the definition of C, sign(x~k)ui is equal to luil for i E C and -Iuil for
i E B\ C, when Pk is sufficiently large. Then the above equation can be
written

L IX~kIPk-1 sign(x~Jui+ L e IX~kIPk-1Iuil =0, (7)
iEA\B iEB

where e= -1 if i E B\ C and e= 1 if i E C. We can now state our main
result.

THEOREM. In the above context, there exist M and Po such that
II xp - sll co ~ Mjp for all P > Po·

Proof Suppose the theorem is false. Then there is an unbounded
increasing sequence {Pk} such that PkAk=Pk IlrPkllw ---l> 00. We will derive a
contradiction by showing that, in this case, the left-hand side of (7) would
eventually be positive.

If iEA\B, then there is a number WE [0,1) such that IX~kl ~wa, when
Pk is sufficiently large. Thus

I L IX~kIPk-1 sign(X~k)uil ~n(wa)Pk-1.
iEA\B

Choose p E (0,1). Since Iv~l---l> 0, Iv~1 < min(pb1, pc) for sufficiently large
k. Then

L \x~kIPk-1Iuil~ L bla-Ak(b1-lv~I)IPk-1
iEB\C iEB\C

Thus, for any 6 1 >0 with exp[a- 1b1(p-1)]+61<1 and for sufficiently
large k,

(9)

Similarly,

L IX~kIPk-1Iuil~ L cla+Akc(1-pWk- 1
ieC ieC
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so, for any 82 > 0 with exp[a -lc(1- p)] - 8 2 > 1 and for sufficiently
large k,

Since )ok(Pk - 1) -+ 00 and each of wand p is less than 1, the quantity in
(lO) dominates those in (8) and (9), so (7) is eventually positive. This
contradiction establishes the theorem.

Remarks. The problem we have addressed concerns the approximation
of real-valued functions on a finite discrete domain. If the domain in
question is a compact interval, the rate bound (log P)Ip is known to hold
and be optimal [6, 8].

Although the discrete P6ya algorithm need not converge for a general
convex approximating set [2], it remains open whether the convergence,
when it occurs, must occur at rate no worse than lip, or may occur
arbitrarily slowly. A general context in which convergence occurs is
described in [5].

Also of interest are the qualitative convergence properties of the net
{xp }. Although it is known [3] that r~ need not in general be monotone,
it is true that in the above example, r~ is ultimately monotone. This may
be seen as follows. Differentiating (4) with respect to P, we see that
(dldp)(x~)= 0 if and only if

n n
loga l L (aj)p!(p-l)_ L (a)P!(P-I)logaj=O. (11)

j= 1 j~l

As p -+ 00, pl(p - l) -+ 1. Since a branch of each of the complex functions
jj(z) = (aj )' is analytic in a neighborhood of z = 1, (11) holds for all p (i.e.,
x~ . is constant), or (11) holds for at most finitely many p in any
neighborhood of p = 00 (i.e., x; is eventually monotone). If this
monotonicity property holds for arbitrary affine subspaces, it would have
desirable consequences relating to the extrapolation of s from x p •

Dual to the question we have just addressed is that of the behavior of r~

as p decreases to one. If q is the dual index defined by lip + 11q = 1, then
the natural conjecture is that r~ = O( llq) = O((p - 1)/p) as p ll. In the case
where K = P, an even stronger statement can be made, viz., the con
vergence is exponential. To see that this is true, let fJ = max{OJ: 1 ::s; i ::s; n },
y = max {OJ: a j < a} and choose 0( so that y < 0( < f3. Looking at (4), we see
that, as p -+ 1, x; -+ 0 if 01 of fl, and x; -+ (kal)-1 if a1= fl, where k is the
number of times the value fl is assumed in the list at> ..., an. By algebraic
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manipulation and L'Hopital's rule, we see that, in either case,
({J/exy/(p-l) r; ~ 0 as p ~ 1 so

The convergence, as p ~ 1, of xp is discussed in [7].
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